skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Glazier, James A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Maini, Philip K (Ed.)
    The Cellular-Potts model is a powerful and ubiquitous framework for developing computational models for simulating complex multicellular biological systems. Cellular-Potts models (CPMs) are often computationally expensive due to the explicit modeling of interactions among large numbers of individual model agents and diffusive fields described by partial differential equations (PDEs). In this work, we develop a convolutional neural network (CNN) surrogate model using a U-Net architecture that accounts for periodic boundary conditions. We use this model to accelerate the evaluation of a mechanistic CPM previously used to investigatein vitrovasculogenesis. The surrogate model was trained to predict 100 computational steps ahead (Monte-Carlo steps, MCS), accelerating simulation evaluations by a factor of 562 times compared to single-core CPM code execution on CPU. Over short timescales of up to 3 recursive evaluations, or 300 MCS, our model captures the emergent behaviors demonstrated by the original Cellular-Potts model such as vessel sprouting, extension and anastomosis, and contraction of vascular lacunae. This approach demonstrates the potential for deep learning to serve as a step toward efficient surrogate models for CPM simulations, enabling faster evaluation of computationally expensive CPM simulations of biological processes. 
    more » « less
    Free, publicly-accessible full text available November 3, 2026
  2. Abstract Mechanistic, multicellular, agent-based models are commonly used to investigate tissue, organ, and organism-scale biology at single-cell resolution. The Cellular-Potts Model (CPM) is a powerful and popular framework for developing and interrogating these models. CPMs become computationally expensive at large space- and time- scales making application and investigation of developed models difficult. Surrogate models may allow for the accelerated evaluation of CPMs of complex biological systems. However, the stochastic nature of these models means each set of parameters may give rise to different model configurations, complicating surrogate model development. In this work, we leverage denoising diffusion probabilistic models (DDPMs) to train a generative AI surrogate of a CPM used to investigatein vitrovasculogenesis. We describe the use of an image classifier to learn the characteristics that define unique areas of a 2-dimensional parameter space. We then apply this classifier to aid in surrogate model selection and verification. Our CPM model surrogate generates model configurations 20,000 timesteps ahead of a reference configuration and demonstrates approximately a 22x reduction in computational time as compared to native code execution. Our work represents a step towards the implementation of DDPMs to develop digital twins of stochastic biological systems. 
    more » « less
    Free, publicly-accessible full text available October 28, 2026
  3. Kemp, Melissa L. (Ed.)
    Tissue Forge is an open-source interactive environment for particle-based physics, chemistry and biology modeling and simulation. Tissue Forge allows users to create, simulate and explore models and virtual experiments based on soft condensed matter physics at multiple scales, from the molecular to the multicellular, using a simple, consistent interface. While Tissue Forge is designed to simplify solving problems in complex subcellular, cellular and tissue biophysics, it supports applications ranging from classic molecular dynamics to agent-based multicellular systems with dynamic populations. Tissue Forge users can build and interact with models and simulations in real-time and change simulation details during execution, or execute simulations off-screen and/or remotely in high-performance computing environments. Tissue Forge provides a growing library of built-in model components along with support for user-specified models during the development and application of custom, agent-based models. Tissue Forge includes an extensive Python API for model and simulation specification via Python scripts, an IPython console and a Jupyter Notebook, as well as C and C++ APIs for integrated applications with other software tools. Tissue Forge supports installations on 64-bit Windows, Linux and MacOS systems and is available for local installation via conda. 
    more » « less
  4. Liu, Jin (Ed.)
    Generative models rely on the idea that data can be represented in terms of latent variables which are uncorrelated by definition. Lack of correlation among the latent variable support is important because it suggests that the latent-space manifold is simpler to understand and manipulate than the real-space representation. Many types of generative model are used in deep learning,e.g., variational autoencoders (VAEs) and generative adversarial networks (GANs). Based on the idea that the latent space behaves like a vector space Radford et al. (2015), we ask whether we can expand the latent space representation of our data elements in terms of an orthonormal basis set. Here we propose a method to build a set of linearly independent vectors in the latent space of a trained GAN, which we call quasi-eigenvectors. These quasi-eigenvectors have two key properties: i) They span the latent space, ii) A set of these quasi-eigenvectors map to each of the labeled features one-to-one. We show that in the case of the MNIST image data set, while the number of dimensions in latent space is large by design, 98% of the data in real space map to a sub-domain of latent space of dimensionality equal to the number of labels. We then show how the quasi-eigenvectors can be used for Latent Spectral Decomposition (LSD). We apply LSD to denoise MNIST images. Finally, using the quasi-eigenvectors, we construct rotation matrices in latent space which map to feature transformations in real space. Overall, from quasi-eigenvectors we gain insight regarding the latent space topology. 
    more » « less
  5. CompuCell3D (CC3D) is an open-source software framework for building and executing multi-cell biological virtual-tissue models. It represents cells using the Glazier–Graner–Hogeweg model, also known as Cellular Potts model. The primary CC3D application consists of two separate tools, a smart model editor (Twedit++) and a tool for model execution, visualization and steering (Player). The CompuCell3D version 4.x release introduces support for Jupyter Notebooks, an interactive computational environment, which brings the benefits of reproducibility, portability, and self-documentation. Since model specifications in CC3D are written in Python and CC3DML and Jupyter supports Python and other languages, Jupyter can naturally act as an integrated development environment (IDE) for CC3D users as well as a live document with embedded text and simulations. This update follows the trend in software to move away from monolithic freestanding applications to the distribution of methodologies in the form of libraries that can be used in conjunction with other libraries and packages. With these benefits, CC3D deployed inJupyter Notebook is a more natural and efficient platform for scientific publishing and education using CC3D. 
    more » « less
  6. Abstract Digital twins represent a key technology for precision health. Medical digital twins consist of computational models that represent the health state of individual patients over time, enabling optimal therapeutics and forecasting patient prognosis. Many health conditions involve the immune system, so it is crucial to include its key features when designing medical digital twins. The immune response is complex and varies across diseases and patients, and its modelling requires the collective expertise of the clinical, immunology, and computational modelling communities. This review outlines the initial progress on immune digital twins and the various initiatives to facilitate communication between interdisciplinary communities. We also outline the crucial aspects of an immune digital twin design and the prerequisites for its implementation in the clinic. We propose some initial use cases that could serve as “proof of concept” regarding the utility of immune digital technology, focusing on diseases with a very different immune response across spatial and temporal scales (minutes, days, months, years). Lastly, we discuss the use of digital twins in drug discovery and point out emerging challenges that the scientific community needs to collectively overcome to make immune digital twins a reality. 
    more » « less
  7. Active-Matter models commonly consider particles with overdamped dynamics subject to a force (speed) with constant modulus and random direction. Some models also include random noise in particle displacement (a Wiener process), resulting in diffusive motion at short time scales. On the other hand, Ornstein–Uhlenbeck processes apply Langevin dynamics to the particles’ velocity and predict motion that is not diffusive at short time scales. Experiments show that migrating cells have gradually varying speeds at intermediate and long time scales, with short-time diffusive behavior. While Ornstein–Uhlenbeck processes can describe the moderate-and long-time speed variation, Active-Matter models for over-damped particles can explain the short-time diffusive behavior. Isotropic models cannot explain both regimes, because short-time diffusion renders instantaneous velocity ill-defined, and prevents the use of dynamical equations that require velocity time-derivatives. On the other hand, both models correctly describe some of the different temporal regimes seen in migrating biological cells and must, in the appropriate limit, yield the same observable predictions. Here we propose and solve analytically an Anisotropic Ornstein–Uhlenbeck process for polarized particles, with Langevin dynamics governing the particle’s movement in the polarization direction and a Wiener process governing displacement in the orthogonal direction. Our characterization provides a theoretically robust way to compare movement in dimensionless simulations to movement in experiments in which measurements have meaningful space and time units. We also propose an approach to deal with inevitable finite-precision effects in experiments and simulations. 
    more » « less
  8. Kosakovsky Pond, Sergei L. (Ed.)
    Respiratory viruses present major public health challenges, as evidenced by the 1918 Spanish Flu, the 1957 H2N2, 1968 H3N2, and 2009 H1N1 influenza pandemics, and the ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Severe RNA virus respiratory infections often correlate with high viral load and excessive inflammation. Understanding the dynamics of the innate immune response and its manifestations at the cell and tissue levels is vital to understanding the mechanisms of immunopathology and to developing strain-independent treatments. Here, we present a novel spatialized multicellular computational model of RNA virus infection and the type-I interferon-mediated antiviral response that it induces within lung epithelial cells. The model is built using the CompuCell3D multicellular simulation environment and is parameterized using data from influenza virus-infected cell cultures. Consistent with experimental observations, it exhibits either linear radial growth of viral plaques or arrested plaque growth depending on the local concentration of type I interferons. The model suggests that modifying the activity of signaling molecules in the JAK/STAT pathway or altering the ratio of the diffusion lengths of interferon and virus in the cell culture could lead to plaque growth arrest. The dependence of plaque growth arrest on diffusion lengths highlights the importance of developing validated spatial models of cytokine signaling and the need for in vitro measurement of these diffusion coefficients. Sensitivity analyses under conditions leading to continuous or arrested plaque growth found that plaque growth is more sensitive to variations of most parameters and more likely to have identifiable model parameters when conditions lead to plaque arrest. This result suggests that cytokine assay measurements may be most informative under conditions leading to arrested plaque growth. The model is easy to extend to include SARS-CoV-2-specific mechanisms or to use as a component in models linking epithelial cell signaling to systemic immune models. 
    more » « less